Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Enzyme Microb Technol ; 149: 109834, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34311879

RESUMO

The goal of this work was the autodisplay of the endo ß-1,4-xylanase (XynA) from Clostridium cellulovorans in Escherichia coli using the AIDA system to carry out whole-cell biocatalysis and hydrolysate xylans. For this, pAIDA-xynA vector containing a synthetic xynA gene was fused to the signal peptide of the toxin subunit B Vibro cholere (ctxB) and the auto-transporter of the synthetic aida gene, which encodes for the connector peptide and ß-barrel of the auto-transporter (AT-AIDA). E. coli TOP10 cells were transformed and the biocatalyst was characterized using beechwood xylans as substrate. Optimal operational conditions were temperature of 55 °C and pH 6.5, and the Michaelis-Menten catalytic constants Vmax and Km were 149 U/gDCW and 6.01 mg/mL, respectively. Xylanase activity was inhibited by Cu2+, Zn2+ and Hg2+ as well as EDTA, detergents, and organic acids, and improved by Ca2+, Co2+ and Mn2+ ions. Ca2+ ion strongly enhanced the xylanolytic activity up to 2.4-fold when 5 mM CaCl2 were added. Also, Ca2+ improved enzyme stability at 60 and 70 °C. Results suggest that pAIDA-xynA vector has the ability to express functional xylanase to perform whole-cell biocatalysis in order to hydrolysate xylans from hemicellulose feedstock.


Assuntos
Clostridium cellulovorans , Xilanos , Clostridium cellulovorans/metabolismo , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Temperatura
2.
Appl Microbiol Biotechnol ; 105(8): 3369-3380, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33797572

RESUMO

Diisononyl phthalate (DINP) is one of plasticisers most employed in the production of plastic materials and belongs to the most important environmental contaminants. In this work, a consortium of saline soil bacterial (SSB) capable of degrading DINP is presented. The genera of SSB-consortium were Serratia sp., Methylobacillus sp., Achromobacter sp., Pseudomonas sp., Stenotrophomonas sp., Methyloversatilis sp., Delftia sp. and Brevundimonas sp. Response surface methodology (RSM) study was employed to optimise and evaluate the culture conditions to improve the biodegradation of DINP. The optimal conditions were a pH 7.0, 31 °C and an initial DINP concentration of 500 mg L-1, resulting in almost complete biodegradation (99%) in 168 h. DINP degradation followed a first-order kinetic model, and the half-life was 12.76 h. During the biodegradation of DINP, 4-derived compounds were identified: monoisononyl phthalate, methyl nonyl phthalate, iso-nonanol and dimethyl phthalate. The metabolite profiling indicated that DINP was degraded through simultaneous pathways of de-esterification and ß-oxidation. Results suggest that the SSB-consortium could be useful for efficient biodegradation of the DINP-contaminated environments. KEY POINTS: • DINP degradation is mediated by de-esterification and ß-oxidation processes. • Temperature and the concentration of the substrate are key factors for DINP biodegradation • The SSB-consortium has the ability to biodegrade 99% of DINP (500 mg L-1).


Assuntos
Achromobacter , Dietilexilftalato , Ácidos Ftálicos , Biodegradação Ambiental , Solo
3.
J Environ Sci Health B ; 55(2): 148-154, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31607217

RESUMO

The presence of diethyl-phthalate (DEP), dibutyl-phthalate (DBP), butylbenzyl-phthalate (BBP), diethylhexyl-phthalate (DEHP) and diisononyl-phthalate (DINP) was determined in 295 tequila samples. They were grouped by age of maturation (white, aged, extra aged or ultra aged) and year of production (between 2013 and 2018). Gas Chromatography coupled with Mass Spectrometry was used for identification and quantification. The results showed that 65 samples (22% of the total) were phthalate free. DEP (0.13-0.27 mg/kg), BBP (0.05-2.91 mg/kg) and DINP (1.64-3.43 mg/kg) were detected in 11 (3.73%), 37 (12.54%) and 5 (1.69%) samples, respectively. But, these concentrations did not exceed the maximum permitted limits (MPL) of phthalates for alcoholic beverages. DBP (0.01-2.20 mg/kg) and DEHP (0.03-4.64 mg/kg) were detected in 96 (32.54%) and 224 (75.93%) samples, from them only 10 (3.39%) and 15 (5.08%) samples, respectively, exceeded the MPL for alcoholic beverages and they were few tequilas produced in the year 2014 or before. DEHP was the most frequent phthalate found in tequila and observed DEHP concentrations were 2-times higher in ultra aged tequilas compared to those in white tequilas. We concluded that all tequilas produced in 2015 and after, satisfied the international standards for these compounds.


Assuntos
Bebidas Alcoólicas/análise , Contaminação de Alimentos/análise , Ácidos Ftálicos/análise , Dibutilftalato/análise , Dietilexilftalato/análise , Análise de Alimentos , Cromatografia Gasosa-Espectrometria de Massas/métodos , México , Fatores de Tempo
4.
J Ind Microbiol Biotechnol ; 45(8): 735-751, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29876685

RESUMO

Toxic concentrations of monocarboxylic weak acids present in lignocellulosic hydrolyzates affect cell integrity and fermentative performance of Saccharomyces cerevisiae. In this work, we report the deletion of the general catabolite repressor Mig1p as a strategy to improve the tolerance of S. cerevisiae towards inhibitory concentrations of acetic, formic or levulinic acid. In contrast with the wt yeast, where the growth and ethanol production were ceased in presence of acetic acid 5 g/L or formic acid 1.75 g/L (initial pH not adjusted), the m9 strain (Δmig1::kan) produced 4.06 ± 0.14 and 3.87 ± 0.06 g/L of ethanol, respectively. Also, m9 strain tolerated a higher concentration of 12.5 g/L acetic acid (initial pH adjusted to 4.5) without affecting its fermentative performance. Moreover, m9 strain produced 33% less acetic acid and 50-70% less glycerol in presence of weak acids, and consumed acetate and formate as carbon sources under aerobic conditions. Our results show that the deletion of Mig1p provides a single gene deletion target for improving the acid tolerance of yeast strains significantly.


Assuntos
Ácido Acético/farmacologia , Formiatos/farmacologia , Ácidos Levulínicos/farmacologia , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Repressão Catabólica , Etanol/metabolismo , Deleção de Genes , Glicerol/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Protein Expr Purif ; 144: 40-45, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29221829

RESUMO

Vasostatin 30 (Vs30) is an active fragment derived from the N-terminal region (135-164 aa) of human calreticulin and has the ability to inhibit angiogenesis. In this work, the expression of Vs30 was performed using a protease-deficient strain of the methylotrophic yeast Pichia pastoris. The vs30 gene was optimized for P. pastoris preferential codon usage and inserted into constitutive expression vector pGAPZαA. In addition, a plasmid with four copies of the expression cassette was obtained and transformed into P. pastoris. The flask fermentation conditions were: culture volume of 25 mL in 250 mL baffled flasks at 28 °C, pH 6 and harvest time of 48 h. Up to 21.07 mg/L Vs30 were attained and purified by ultrafiltration with a 30-kDa cut-off membrane and the recovery was 49.7%. Bioactivity of Vs30 was confirmed by the inhibition of cell proliferation, as well as the inhibition of the capillary-like structures formation of EA.hy926 cells in vitro. This work constitutes the first report on the expression of Vs30 in Pichia pastoris using a constitutive promoter and multi-copy approach such as strategies to improve the recombinant Vs30 expression.


Assuntos
Calreticulina/genética , Clonagem Molecular/métodos , Fragmentos de Peptídeos/genética , Calreticulina/isolamento & purificação , Linhagem Celular , Expressão Gênica , Humanos , Fragmentos de Peptídeos/isolamento & purificação , Pichia/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
6.
Microb Cell Fact ; 13: 136, 2014 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-25281236

RESUMO

BACKGROUND: The aromatic compound catechol is used as a precursor of chemical products having multiple applications. This compound is currently manufactured by chemical synthesis from petroleum-derived raw materials. The capacity to produce catechol is naturally present in several microbial species. This knowledge has been applied to the generation of recombinant Escherichia coli strains that can produce catechol from simple carbon sources. RESULTS: Several strains derived from E. coli W3110 trpD9923, a mutant that overproduces anthranilate, were modified by transforming them with an expression plasmid carrying genes encoding anthranilate 1,2-dioxygenase from Pseudomonas aeruginosa PAO1. The additional expression of genes encoding a feedback inhibition resistant version of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase and transketolase from E. coli, was also evaluated. Generated strains were characterized in complex or minimal medium in shake-flask and fed-batch bioreactor cultures and incubation temperatures ranging from 37 to 28°C. These experiments enabled the identification of culture conditions for the production of 4.47 g/L of catechol with strain W3110 trpD9923, expressing 1,2-dioxygenase, DAHP synthase and transketolase. When considering the amount of glucose consumed, a yield of 16% was calculated, corresponding to 42% of the theoretical maximum as determined by elementary node flux analysis. CONCLUSIONS: This work demonstrates the feasibility of applying metabolic engineering for generating E. coli strains for the production of catechol from glucose via anthranilate. These results are a starting point to further optimize environmentally-compatible production capacity for catechol and derived compounds.


Assuntos
Proteínas de Bactérias , Catecóis/metabolismo , Escherichia coli , Expressão Gênica , Glucose/metabolismo , Oxigenases de Função Mista , Pseudomonas aeruginosa/genética , ortoaminobenzoatos/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Oxigenases de Função Mista/biossíntese , Oxigenases de Função Mista/genética , Pseudomonas aeruginosa/enzimologia
7.
Microb Cell Fact ; 12: 108, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24225202

RESUMO

BACKGROUND: Natural aromatic polymers, mainly melanins, have potential and current applications in the cosmetic, pharmaceutical and chemical industries. The biotechnological production of this class of compounds is based on tyrosinase-dependent conversion of L-tyrosine and other aromatic substrates into melanins. The purpose of this work was to apply metabolic engineering for generating Escherichia coli strains with the capacity to synthesize an aromatic polymer from a simple carbon source. RESULTS: The strategy was based on the expression in E. coli of the MutmelA gene from Rhizobium etli, encoding an improved mutant tyrosinase. To direct the carbon flow from central metabolism into the common aromatic and the L-tyrosine biosynthetic pathways, feedback inhibition resistant versions of key enzymes were expressed in strains lacking the sugar phosphotransferase system and TyrR repressor. The expressed tyrosinase consumed intracellular L-tyrosine, thus causing growth impairment in the engineered strains. To avoid this issue, a two phase production process was devised, where tyrosinase activity was controlled by the delayed addition of the cofactor Cu. Following this procedure, 3.22 g/L of melanin were produced in 120 h with glucose as carbon source. Analysis of produced melanin by Fourier transform infrared spectroscopy revealed similar characteristics to a pure eumelanin standard. CONCLUSIONS: This is the first report of a process for producing melanin from a simple carbon source at grams level, having the potential for reducing production cost when compared to technologies employing L-tyrosine as raw material.


Assuntos
Escherichia coli/enzimologia , Glucose/metabolismo , Melaninas/síntese química , Monofenol Mono-Oxigenase/metabolismo , Tirosina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Melaninas/biossíntese , Engenharia Metabólica , Plasmídeos/metabolismo , Tirosina/biossíntese , Tirosina/genética
8.
AoB Plants ; 5: plt033, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24147216

RESUMO

From the first land plants to the complex gymnosperms and angiosperms of today, environmental conditions have forced plants to develop molecular strategies to surpass natural obstacles to growth and proliferation, and these genetic gains have been transmitted to the following generations. In this long natural process, novel and elaborate mechanisms have evolved to enable plants to cope with environmental limitations. Elements in many signalling cascades enable plants to sense different, multiple and simultaneous ambient cues. A group of versatile master regulators of gene expression control plant responses to stressing conditions. For crop breeding purposes, the task is to determine how to activate these key regulators to enable accurate and optimal reactions to common stresses. In this review, we discuss how plants sense biotic and abiotic stresses, how and which master regulators are implied in the responses to these stresses, their evolution in the life kingdoms, and the domains in these proteins that interact with other factors to lead to a proper and efficient plant response.

9.
Microb Cell Fact ; 8: 19, 2009 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-19341482

RESUMO

BACKGROUND: Anthranilate is an aromatic amine used industrially as an intermediate for the synthesis of dyes, perfumes, pharmaceuticals and other classes of products. Chemical synthesis of anthranilate is an unsustainable process since it implies the use of nonrenewable benzene and the generation of toxic by-products. In Escherichia coli anthranilate is synthesized from chorismate by anthranilate synthase (TrpED) and then converted to phosphoribosyl anthranilate by anthranilate phosphoribosyl transferase to continue the tryptophan biosynthetic pathway. With the purpose of generating a microbial strain for anthranilate production from glucose, E. coli W3110 trpD9923, a mutant in the trpD gene that displays low anthranilate producing capacity, was characterized and modified using metabolic engineering strategies. RESULTS: Sequencing of the trpED genes from E. coli W3110 trpD9923 revealed a nonsense mutation in the trpD gene, causing the loss of anthranilate phosphoribosyl transferase activity, but maintaining anthranilate synthase activity, thus causing anthranilate accumulation. The effects of expressing genes encoding a feedback inhibition resistant version of the enzyme 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (aroGfbr), transketolase (tktA), glucokinase (glk) and galactose permease (galP), as well as phosphoenolpyruvate:sugar phosphotransferase system (PTS) inactivation on anthranilate production capacity, were evaluated. In shake flask experiments with minimal medium, strains W3110 trpD9923 PTS- and W3110 trpD9923/pJLBaroGfbrtktA displayed the best production parameters, accumulating 0.70-0.75 g/L of anthranilate, with glucose-yields corresponding to 28-46% of the theoretical maximum. To study the effects of extending the growth phase on anthranilate production a fed-batch fermentation process was developed using complex medium, where strain W3110 trpD9923/pJLBaroGfbrtktA produced 14 g/L of anthranilate in 34 hours. CONCLUSION: This work constitutes the first example of a microbial system for the environmentally-compatible synthesis of anthranilate generated by metabolic engineering. The results presented here, including the characterization of mutation in the trpD gene from strain W3110 trpD9923 and the development of a fermentation strategy, establish a step forward towards the future improvement of a sustainable process for anthranilate production. In addition, the present work provides very useful data regarding the positive and negative consequences of the evaluated metabolic engineering strategies.

10.
Protein Expr Purif ; 59(1): 169-74, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18329891

RESUMO

A synthetic human interferon gamma (hIFN-gamma) gene was fused to SP1 and SP3, two Sec-dependent artificial signal peptides to transport the hIFN-gamma to the periplasm of Escherichia coli BL21-SI. The processing efficiency of both SP1-hIFN-gamma and SP3-hIFN-gamma was dependent on the culture medium as well as the post-induction temperature. Both precursors were processed completely when cells were cultured using minimal medium and a post-induction temperature of 32.5 degrees C, and only the processed hIFN-gamma was detected. The SP3 signal peptide was more efficient than SP1 for the secretion of hIFN-gamma. Sixty percent of the total hIFN-gamma was secreted to the periplasm using the SP3 signal peptide and a post-induction temperature of 20 degrees C. Using Tris-sucrose-dithiothreitol (TSD) hypertonic buffer, the periplasmic soluble hINF-gamma was recovered with a purity of 85%.


Assuntos
Escherichia coli/metabolismo , Interferon gama/biossíntese , Periplasma/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Escherichia coli/ultraestrutura , Humanos , Interferon gama/isolamento & purificação , Dados de Sequência Molecular , Sinais Direcionadores de Proteínas/genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...